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Abstract. We propose to compute the thermodynamic properties of many-body systems using a path-
sampling Monte Carlo scheme implemented in a generalized path ensemble. Trial paths are generated
through an expanded ensemble using a reversible discretization of Langevin’s equation of motion. We also
show how the systematic errors resulting from the use of a finite time step can rigorously be taken into
account in the path-sampling scheme. We find that the degree of convergence of the estimated thermody-
namic quantity towards the exact value correlates with the mean acceptance rates of the path-sampling
scheme. An application of the path method for simulating glassy systems is finally suggested.

PACS. 82.60.Lf Thermodynamics of solutions – 07.05.Tp Computer modeling and simulation – 64.70.Pf
Glass transitions

1 Introduction

Thermodynamic properties of many-body systems can
be computed by means of appropriate Monte Carlo pro-
cesses [1] whose evolution rules must obey two principles,
ergodicity and reversibility to insure the numerical conver-
gence of the averages performed over the generated states
towards the exact values. The need for saving computing
time being a permanent request, the principle of detailed
balance is usually satisfied because it insures the direct
convergence of generated state distribution towards the
equilibrium stationary distribution. In practice, one imple-
ments the Metropolis algorithm that consists of rejecting
some of the unfavourable generated states (or configura-
tions).

However, computing the thermodynamic potentials re-
quires to implement one of the many methods of gener-
alized ensembles [2,3]. One can for instance couple the
many-body system with a known reference system (ideal
gas), introduce an adequate “expanded ensemble” describ-
ing the the so-introduced hybrid system and then extract
the thermodynamic properties by sampling over the ex-
panded ensemble [4–7]. In practice, the various subparti-
tion functions of the expanded ensemble differ from each
other by many orders of magnitude. As a result, an appro-
priate set of bias factors aimed at insuring a subsequent
homogeneous sampling over the subensembles included in
the expanded ensemble must be introduced. Various iter-
ative procedures [4,8,9] allow to construct the adequate
set of bias factors during short preliminary runs. Differ-
ences of thermodynamic potentential, such as excess free
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energies can then be obtained from the biased occupation
ratios of subensembles collected during a long run.

The alternative for exploring the phase space of many-
body systems consists of generating trajectories by means
of an adequate dynamics and sampling over the so-
introduced path ensemble [10–14]. The conditions imposed
over the dynamics then permit to derive the physical
properties of interest from the generated distribution of
paths. In practice, it is convenient to impose that the
probability flux along a generated trajectory is invariant
over a time reversal. For a deterministic path, the flux-
reversibility condition would correspond to the invariance
of the equations of dynamics with respect to a time re-
versal. For stochastic paths generated using Langevin-like
equations, it corresponds to an extension of detailed bal-
ance that accounts for the time symmetry in Markov pro-
cesses [15,16]1.

The purpose of the present article is to show how
to compute thermodynamic properties of a many-body
system using a path-sampling scheme for which the trial
paths are generated through an expanded ensemble. The
challenging issue that motivates this methodological de-
velopment is to simulate the thermodynamics of glassy
systems directly. For example, finding phase coexistence
conditions in nuclear glasses is essential for waste man-
agement programs. Unfortunately, implementing exist-
ing generalized ensemble methods in glassy systems be-

1 At variance with detailed balance, the flux-reversibility
condition is not compatible with the Metropolis rejection al-
gorithm and does not imply either the diagonalisability of the
transition matrix.
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comes problematic. Because the microstructure evolves
very slowly, the bias factors of the expanded ensemble
method should be permitted to vary during the whole pro-
duction run, which is possible [17] even though non trivial.
More importantly, one should also find how to restrain the
sampling efficiency in the glass transition region so as to
prevent the system from recrystallizing.

The article is organized as follows: the principles of
statistical mechanics in expanded ensembles are recalled
in Section 2. Section 3 defines a generalized path ensemble
and some associated path functions. Section 3.1 describes
the way the stochastic paths are constructed by imple-
menting a discretized Langevin’s equation. A generaliz-
able approach is indeed proposed in Appendix A for dis-
cretizing Langevin-like equations used in path-sampling
schemes. In the following section, it is shown how to ex-
tract the thermodynamic properties from averages over
the constructed path-distribution by means of two distinct
methods. The second method is recalled in Appendix B,
as it was proposed earlier [18,19] from a view point differ-
ent from path-sampling. In Section 4, an applicative study
of the path ensemble method is presented for a Lennard-
Jones fluid whose free energy is calculated. It is finally
suggested how to implement the path-sampling method-
ology in a glassy system.

2 Thermal ensembles

2.1 Canonical ensemble

Let us consider a system of N particles and volume V .
We assume that the system is contained in a cubic cell of
edge L and define the 6N coordinates of a state as

Γ = (r, ṙ) = (r1, ..., rN , ṙ1, ..., ṙN )

where the 3N -vectors r and ṙ correspond to the particle
positions and velocities, respectively. The configurational
energy

E(r) =
∑
ij

J
(
|ri − rj |

)
(1)

is assumed to be described by a pairwise interaction po-
tential. The summation runs on all particle pairs and
|ri − rj | corresponds to the distance between particles i
and j. The Hamiltonian H(p, r) = p · ṙ − L(ṙ, r) cor-
responds to the Legendre transform of the system La-
grangian L(ṙ, r) = m

2 |ṙ|2 − E(r), where the generalized
momentum vector is p ≡ ∂ṙL(ṙ, r) and m is the particle
mass. Introducing the inverse temperature, β, the canon-
ical partition function is

Z(N, V, β) =
1

h3NN !

∫ +∞

−∞
dp
∫ L

0

dr exp [−βH(p, r)] ,

(2)
where h is Planck’s constant. The state density N (Si) =
exp[−βH(Si)]/[h3NN !] is called the Boltzmann weight.

2.2 Expanded ensemble

Let Hλ(p, r) = T (p) + λE(r) denote a parametrized
Hamiltonian where the coupling parameter λ ranges from
λ0 to λM and where the kinetic energy T (p) = 1

2m |p|2
has not been parametrized to avoid particle momentum
rescaling [6]. This allows to define a parametrized isother-
mal ensemble Zλ whose partition function is:

Zλ =
1

h3NN !

∫ +∞

−∞
dp
∫ L

0

dr exp
[
−βHλ(p, r)

]
. (3)

Let consider a set Λ = {λ0, ..., λn, ...λM} of M + 1 in-
creasing values and denote Z = ∪λ∈ΛZλ the expanded
ensemble [4] defined as the union of parametrized isother-
mal ensembles. The expanded partition function is

Z =
m=M∑
m=0

Zλm =
Sk∈Zλ∑

λ∈Λ

Nλ(Sk) (4)

where Nλ(Sk) = exp[−βHλ(Sk)]/[h3NN !] denotes the
corresponding state density. The excess free energy can
be computed from the following partition function ratio

Fex = − 1
β

ln
ZλM=1

Zλ0=0
, (5)

where the “reference” partition function Z0 which corre-
sponds to a system of N non-interacting particles (ideal
gas) possesses an analytical form. Accordingly, the free
energy is

F = Fex − 1
β

ln
L3N

Λ3NN !
(6)

where Λ is de Broglie’s wavelength (Λ =
√

h2β/2π m).
In the present study, we will only investigate the com-

putation of the excess free energy. However, any thermo-
dynamic quantity can, in principle, be obtained from a
partition function ratio as in equation (5), since it can
formally be expressed as a function of the thermodynamic
potential and its derivatives. For instance, setting λM = 1
enables to compute the mean internal energy from the
following limit

β〈E〉 = − lim
λ0→1

[
(1 − λ0)−1 ln

Z1

Zλ0

]
. (7)

3 Path ensembles

3.1 Stochastic paths

Let consider the paths Pj
i consisting of M+1 states {(Si ∈

Zλ0=0), ..., (Skm ∈ Zλm), ..., (Sj ∈ ZλM=1)} where λm

runs through Λ. They are generated througout the ex-
panded ensemble Z with the stochastic algorithm de-
scribed below. We note Ω01 the “phase space” of such
paths and Ω01

ij the (infinite) subspace of paths Pj
i con-

necting a given Si ∈ Z0 to a given Sj ∈ Z1.
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Path are constructed by means of Langevin’s equation
of motion [20]. A symplectic Langevin algorithm based on
the leapfrog scheme [21] has been derived in Appendix A
for a system at constant temperature, volume and parti-
cle number and with a conservative potential. In the ex-
panded ensemble, the coupling parameter λn is indexed
to the step number of the Langevin algorithm. Hence,
at a given step, the total force used to update the mo-
menta is the sum of the interparticle force, gradient of the
parametrized Hamiltonian Hλ at position rn,

fλ
n = −∇rnHλn(pn, rn) = λnfn

and the fluctuating Langevin force ln generated with prob-
ability

b±n =
[

αβ∆t

4mπγ̃

] 3N
2

exp

{
− αβ

2m

2
γ̃∆t

×
∣∣∣∣ln ∆t

2
± γ̃

∆t

2

(
pn∓ 1

2
± λnfn

∆t

2

)∣∣∣∣
2
}

(8)

where pq+ 1
2

= m(rq+1 − rq)/∆t, γ̃ and α−1 = 1 − γ̃∆t/2
are respectively the half-step momenta, a discretized fric-
tion and a correcting factor (for more details see Ap-
pendix A where Eq. (8) corresponds to either Eqs. (34)
or (35)). The paths can be generated either from Z0 to Z1

with the positive time step ∆t or from Z1 to Z0 with −∆t.
They consist in Nstep = M − 1 Langevin steps plus two
additional half-steps on the momenta at the path extrem-
ities. The first and last half-steps are implemented setting
the Langevin force to zero so that p 1

2
or pM− 1

2
can be

univocally defined from S(i)0 = Si or S(i)M = Sj , respec-
tively. In this way, the reversibility of a whole Langevin
path is preserved.

Substituting

pn− 1
2

+ pn+ 1
2

=
m

∆t
[rn+1 − rn−1] (9)

−λnfn +
m

∆t2
(rn+1 + rn−1 − 2rn) = ln (10)

into equation (8) permits to regroup the symmetric and
asymmetric contributions into the probability

∏M−1
n=1 b±n

to generate Pj
i for the positive or negative time directions

P±
gen(Pj

i ) ∝ exp

{
− β

2ω

M−1∑
n=1

∣∣∣∣ln ∆t

2
± ω

rn+1 − rn−1

2∆t

∣∣∣∣
2
}

∝ exp
{
−β

2

[
S̃ij ±Qi→j

]}
(11)

where ω = mγ̃∆t
2α−1 . The symmetric and asymmetric contri-

butions are

Sij =
1
2

M−1∑
n=1

{
|ln|2

∆t2

2ω
+
∣∣∣∣rn+1 − rn−1

2

∣∣∣∣
2 2ω

∆t2

}

Qi→j =
M−1∑
n=1

ln · rn+1 − rn−1

2
(12)

and can be respectively interpreted as a classical mechan-
ical action (defined over a non-classical Lagrangian) and
a heat transfered from the thermostat. The two possible
probability fluxes can be conveniently expressed as a func-
tion of a symmetric path energy Ũ ij = H(j) + H(i) + S̃ij

and an effective work W̃i→j = H(j) − H(i) − Qi→j , as
follows

K0(Pj
i ) = N0(Si)P+

gen(Pj
i ) = κ exp

[
−β

2

(
Ũ ij − W̃i→j

)]

K1(Pj
i ) = N1(Sj)P−

gen(Pj
i ) = κ exp

[
−β

2

(
Ũ ij + W̃i→j

)]

where κ = 1
h3N N !

[
αβ∆t
4mπγ̂

] 3N(M−1)
2

.

3.2 Path statistics

A path density and a path distribution, analog of
Boltzmann’s weight and Gibbs’s distribution must now be
introduced in order to define the thermodynamic path-
ensemble. The density of path Pj

i is defined to be a
probability flux obtained from Langevin’s equation [10].
This density can be written as the exponential of an ac-
tion related to the two introduced variants of Langevin’s
equation

βŨ
(
Pj

i

)
= β

[
1
2
Ũ ij +

(
θ − 1

2

)
W̃i→j

]
.

The meaning of the θ parameter will be discussed later.
Briefly, this parameter reflects the time asymmetry and is
related to the effective work introduced into the present
driven system. Note that for conservative systems, the
asymmetric effective work was shown to correspond to
discretization errors of some orders with respect to the
time step [11,12] and was therefore neglected in subse-
quent studies.

Let Z̃θ designate the normalizing factor for the path
analog of the Gibbs distribution. It can be expressed in
a compact form by means of the probability fluxes in the
positive and negative time direction

Z̃θ = κ
∑

Pj
i ∈Ω01

exp−β

[
1
2
Ũ ij +

(
θ − 1

2

)
W̃i→j

]
(13)

=
∑

Pj
i ∈Ω01

[K0(Pj
i )]1−θ[K1(Pj

i )]θ. (14)

The path density comprises a state density contribution
[N0(Si)]1−θ[N1(Sj)]θ (Si ∈ Z0 and Sj ∈ Z1 belong to Pj

i )
that appears delocalized for intermediate θ-values: the ef-
fect of the θ parameter is to constrain the distribution of
the terminal states of the path. For the two extremal θ-
values 0 and 1, the generated states Si ∈ Pj

i or Sj ∈ Pj
i

are distributed according to Z0 or Z1, respectively, as a
result of the normalization of the generating probabilities.
The physical situation for these two values clearly corre-
sponds to transient nonequilibrium thermodynamics. We
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temporarily digress from equilibrium to nonequilibrium
thermodynamics here because, as will be shown in Sec-
tion 4, artificially controlling the mean entropy produc-
tion will enable us to optimize the efficiency of compu-
tations aimed at extracting equilibrium thermodynamic
properties.

Let σi→j = W̃i→j −Fex designate the entropy produc-
tion that results from increasing the coupling parameter λ
from 0 to 1 along path Pj

i . Since the factor β(θ − 1/2) in
equation (13) corresponds to the Lagrange multiplier that
allows to maximize the path information entropy [22] with
a constraint on the mean effective work, standard thermo-
dynamic averages or relations can be defined or derived
with respect to θ in this generalized path ensemble. One
then defines the mean effective work and the probability
of entropy production σ0→1, as 〈W̃i→j〉θ = −β−1∂θ log Z̃θ

and P θ
ent(σ

0→1) = 〈δ(W̃i→j − Fex − σ0→1)〉θ, respec-
tively. Then, for transient non-equilibrium thermodynam-
ics, as for steady-state non-equilibrium thermodynam-
ics [22], Carnot’s second principle and the fluctuation
theorem concerning the distribution of entropy produc-
tion [23–25] are direct consequences of a Gibbs statistical
approach

∫ 1

0

dθ〈σi→j〉θ = 0 (15)

∂θ〈σi→j〉θ = −β〈
[
σi→j − 〈σi→j〉θ

]2〉θ ≤ 0 (16)

P 0
ent(σ0→1)

P 1
ent(σ0→1)

= exp βσ0→1 (17)

which stems again from the normalization of the generat-
ing probabilities (Z̃1/Z̃0 = exp−βFex).

The second principle results from equation (15) and
inequality (16) and states that paths generated with re-
spect to the Z̃0 or Z̃1 distribution possesses a positive
mean entropy production relative to the positive or neg-
ative direction of time, respectively. Moreover, the higher
is the mean entropy production and the more disperse are
expected to be the entropy productions σi→j with respect
to Z̃0 or Z̃1 statistics as a result of equality (16). The fluc-
tuation theorem (17) relates the ratio of the probabilities
of having a given entropy production σ0→1 in the positive
time direction to that of having σ1→0 = −σ0→1 in the
negative time direction. It also shows how the probability
of violation of the second principle becomes exponentially
small as the system size increases.

3.3 Path-sampling scheme

Let us now focus on the Monte Carlo sampling of the Z̃θ

path ensemble. Following Dellago et al. [12], trial paths
will be generated either from Z0 to Z1 with the positive
time direction or from Z1 to Z0 with the negative time
direction. Let Pj′

i denote a trial path generated from Z0

to Z1 with the positive time direction and P+
acc(P

j′
i ) the

a posteriori acceptance probability of the Monte Carlo

scheme. This probability must obey a detailed balance
equation considered with respect to the Z̃θ distribution[
K0(Pj

i )1−θK1(Pj
i )θ
]
P+

gen(Pj′
i )P+

acc(P
j′
i ) =[

K0(Pj′
i )1−θK1(Pj′

i )θ
]
P+

gen(Pj
i )P+

acc(P
j
i ) (18)

where the Monte Carlo a priori probabilities coincide with
the conditional probabilities P+

gen(Pj
i ) or P+

gen(Pj′
i ). This

feature results from the fact that there exists a bijection
between the path subspace

∑
j Ω01

ij and the set of random
number sequences used to construct a path in the pos-
itive time direction: a random number sequence defines
the trial trajectory of the forwards chain, and, the current
trajectory must also univocally define the random number
sequence that should be used to compute P+

gen(Pj
i ) in the

backwards chain. From equation (18), one deduces

P+
acc(P

j′
i ) = min


1,

[
K1(Pj′

i )

K0(Pj′
i )

K0(Pj
i )

K1(Pj
i )

]θ

 . (19)

An acceptance probability for a trial path Pj
i′ constructed

with the negative time direction from Sj ∈ Z1 is

P−
acc(P

j
i′) = min


1,

[
K0(Pj

i′)
K1(Pj

i′)
K1(Pj

i )
K0(Pj

i )

]1−θ

 , (20)

which is similarly deduced from a detailed balance condi-
tion involving the negative time direction[
K0(Pj

i )1−θK1(Pj
i )θ
]
P−

gen(Pj
i′ )P

−
acc(P

j
i′) =[

K0(Pj
i′)

1−θK1(Pj
i′ )

θ
]
P−

gen(Pj
i )P−

acc(P
j
i ). (21)

Ergodicity in the path ensemble is guaranteed by the fact
that paths are generated in both directions of time. How-
ever, if trial paths are always generated in the positive
time direction, the states Si ∈ Pj

i from which the trial
path Pj′

i is initiated must be permitted to explore Z0 oth-
erwise ergodicity is not guaranteed. Thus one has to per-
form a few Metropolis Monte Carlo steps in Z0 in order
to generate a state Si′ 	= Si from which the trial path Pj′

i′
will be generated. If the additional configurational Monte
Carlo moves that explores Z0 obey detailed balance, then
the following bias

Pgen(Si′ → Si)Pacc(Si′ → Si)
Pgen(Si → Si′)Pacc(Si → Si′)

=
N0(Si)
N0(Si′)

, (22)

has to be incorporated into the acceptance probability of
equation (19). This case will be encountered in Section 4.4
for the monodirectional path-sampling scheme.

3.4 Expanded path method

Access to the free energy profile, i.e. to the values of Zλ

with λ ranging from 0 to 1, can be achieved by extending
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the thermodynamic perturbation identity [1,26] to path
ensembles. The successive paths generated by the sam-
pling scheme are distributed according to the Z̃θ equilib-
rium distribution, but they can also be represented with
respect to a set of path distributions whose normalizing
functions Ẑλ coincide with the partition functions Zλ.

This leads us to introduce a second path distribu-
tion whose path density possesses a localized state density
Nλ(Sk) where Sk ∈ Zλ belongs to Pj

i . Let Ωλν
k denote the

subspace of truncated paths connecting Sk ∈ Zλ with any
state Sl ∈ Zν , and note Pλ→ν the probability to generate
the truncated path from Zλ to Zν with the positive time
direction if λ < ν, or the negative time direction if λ > ν.
Then, taking advantage of the normalization of the gen-
erating probabilities, one defines the projection function

Ẑλ =
Sk∈Zλ∑

Pk
i ∈Ωλ0

k
Pj

k
∈Ωλ1

k

Pλ→0
gen (Pk

i )Nλ(Sk)Pλ→1
gen (Pj

k), (23)

that coincides with the partition function Zλ. The values
Ẑλ/Z̃θ ≡ Zλ/Z̃θ can be monitored for a range of λ values
in [0, 1] by projecting the paths on Ẑλ which gives access
to the free energy profile.

As an illustration of the method, the excess free energy
can be computed from the following identity

exp [−βFex] =
〈
[
K1(P{s})/K0(P{s})

]1−θ〉θ
〈
[
K0(P{s})/K1(P{s})

]θ〉θ (24)

where the P{s}’s are the successive paths of the Markov
chain. The θ subscript with the brackets indicates that
the paths are distributed according to the Z̃θ equilib-
rium statistics. The numerator and the denominator are
simultaneously computed. The former corresponds to the
Z̃1/Z̃θ value while the latter to the Z̃0/Z̃θ value, recalling
that Z̃0 = Ẑ0 = Z0, Z̃1 = Ẑ1 = Z1 and βFex = − ln Z1

Z0
.

An alternative for computing the excess free energy
is the residence weight method [18,19], recalled in Ap-
pendix B. This method requires to always reverse the time
direction after a Metropolis test.

3.5 Algorithmics

Noting P{s} the paths of the generated chain, we define
W̃{s} = W̃i→j = −W̃j→i the corresponding works consid-
ered in the positive time direction (P{s} ≡ Pj

i , Si ∈ Z0

and Sj ∈ Z1). It will prove convenient to introduce the

work function φx{s} = exp
[
β(θ − x)W̃{s}

]
, x ∈ [0,1] and

to materialize the time direction with ν that will be ei-
ther 0 or 1 depending on whether time flows positively
or negatively. From P{s}, the generation of a trial path
P ′
{s+1} and the determination of the ensuing path P{s+1}

are carried out with the following pseudo-programming
code

(1) one considers the initial momenta p0 = p(i) or pM =
p(j) and computes p 1

2
= p0 + fλ

0 ∆t/(2) or pM− 1
2

=
pM − fλ

M∆t/(2), depending on the time direction;
(2) one performs M−1 times the following steps: starting

from n = 0 for the positive time direction, or, from
n = M for the negative time direction,
(i) one updates the increment n := n ± 1,
(ii) one computes the new position rn = rn∓1 ±

pn∓ 1
2

∆t
m ,

(iii) one generates the Langevin force ln using equa-
tion (8),

(iv) one computes the new momenta pn± 1
2

= pn∓ 1
2
±

(fλ
n + ln)∆t;

(3) one computes the final momenta p(j′) = pM =
pM− 1

2
+ fλ

M∆t/(2) or p(i′) = p0 = p 1
2
− fλ

M∆t/(2),
depending on the time direction;

(4) one defines the trial path P ′
{s+1} as Pj′

i or Pj
i′ depend-

ing on the direction of time ν, evaluates the effective
work W̃ ′

{s+1} along P ′
{s+1} in the positive time direc-

tion and computes φ′
ν{s+1} = exp

[
β(θ − ν)W̃ ′

{s+1}
]
;

(5) one chooses P{s+1} randomly between P ′
{s+1} with

probability min
(
1, φν{s}/φ′

ν{s+1}
)

and P{s} with

probability max
(
0, 1 − φν{s}/φ′

ν{s+1}
)
;

(6) one increments the path weights

π0 := π0 +φ0{s+1}
π1 := π1 +φ1{s+1};

(7) if the time direction is always reversed after the
Metropolis test, one increments the corresponding res-
idence weight

τν := τν + min
(
φν{s+1}, φν{s}

)
if acceptance, or in case of rejection

τν := τν + φ′
ν{s+1} − φν{s}.

Estimates of the excess free energy βFex are given by ln π1
π0

or ln τ1
τ0

. They are obtained by averaging the effective work
over numerous transformations carried out in one or both
directions of time.

Note that carrying out transformations in the positive
direction of time only with θ = 0 corresponds to a discrete
version of Jarzinski’s fast-growth method [27,28] (and ex-
tended to discrete Metropolis paths [29]). As this method
considers continuous-time stochastic dynamics, the direct
work W0→1 =

∑M−1
n=0

[
Hλn+1

n −Hλn
n

]
is derived instead of

the present effective work. The difference between the ef-
fective and direct works corresponds to the “discretization
error” that results from the use of a finite time step into
Langevin’s equation. Monitoring the direct work will en-
able to control the discretization errors and subsequently
to optimize the path-sampling efficiency. Note also that
the Metropolis acceptation procedure is not taken into
account in the fast-growth method, and, as a result, this
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method does not achieve importance sampling [19], un-
like generalized ensemble methods for which it is the key
ingredient.

4 Simulations

4.1 Lennard-Jones system

The path-sampling scheme is implemented in a three-di-
mensional Lennard-Jonesian fluid and the excess free en-
ergy is computed at a relatively high density and low tem-
perature. We have used as a benchmark, the case study in
reference [30] and thus used the same set of potential and
simulation parameters.

The usual Lennard-Jones interaction potential, for a
pair of particles separated by a distance r, is given by

JLJ (r) = 4ε
[
(σ/r)12 − (σ/r)6

]
(25)

where ε is the depth of the potential at its minimum, and
σ is the van der Waals diameter of the particle. A modified
potential was instead used:

J (r) =




a − br2, 0 ≤ r ≤ 0.8σ

JLJ (r) + c(r − rc) − d 0.8σ ≤ r ≤ rc

0 rc ≤ r

where the cut-off distance, rc, is taken to be half the
length, L, of a side of the computational cell and the con-
stant a, b, c and d are chosen to preserve the continuity
of J and its derivative. The size L of the computational
cell is 5.3×σ, the temperature is β−1 = ε and the number
of particle, 125. The particle mass is 6.63 × 10−26 kg and
determines the time scale in seconds.

4.2 Simulation parameters

The computational efficiency will now be investigated as a
function of the simulation parameters, {λn, 0 ≤ n ≤ M},
γ̃∆t, ∆t, Nstep ≡ M − 1 and θ. However, the first set of
parameters has been chosen from phenomenological argu-
ments. As the largest part of the work required for trans-
forming the system from Z0 to Z1 consists of removing
short distance interactions in the near ideal gas regime,
the choice λn = ( n

M )2 appeared appropriate. In practice,
it was observed to approximately balance the acceptance
rates τ+

acc and τ−
acc with respect to the positive and nega-

tive directions of time.
Since a convenient diagnosing tool to check the conver-

gence of the estimated free energy was shown [19] to be the
degree of overlap between paths generated in the positive
versus negative time directions, alternating the direction
of time after each Metropolis test was first imposed and
the residence weight method was used with the sampling
parameter θ set to 1/2 corresponding to the same inter-
mediate value as in the previous study [19].

4.3 Bidirectional scheme

Table 1 yields the results of the free energy computations
for various values of the discretized friction, time step and
number of steps. The friction strength via the γ̃∆t pa-
rameter was first set to 10−1. The number of Langevin
steps Nstep required to obtain high enough a mean ac-
ceptance rate and thus converged free energy estimations
was, in this case, found to be about 106 or 107 depending
on the time step ∆t.

When the number of Langevin steps is 106 and the
time step is ∆t = 1 fs or ∆t = 2 fs, the discretization errors
(measured from the difference between the effective and
direct works) are negligible. However, the acceptance rate
is low. This is attributed to the insufficient heat transfer
towards the reservoir during the too fast quenches or an-
nealing. An additional simulation has been carried out by
increasing the number of Langevin steps to Nstep = 107.
The mean acceptance rates are higher, due to a larger con-
version of the internal energy into heat towards the ther-
mostat: the microstructure relaxes more efficiently during
these longer transformations (in both physical and CPU
times) and the free energy can be well estimated.

When increasing the time step to ∆t = 4 fs with
Nstep = 106, we observe that discretization errors become
more important than for ∆t = 2 fs and Nstep = 106 of the
previous case. However, the standard deviation for the free
energy estimation is much narrower and the mean accep-
tance rates are much higher than for the previous case.
This is attributed to the fact that the system is observed
to relax more efficiently during the longer transformations
(in physical time but at constant CPU time). The case
∆t = 4 fs and Nstep = 106 is almost as efficient as the
case ∆t = 2 fs and Nstep = 107, the standard deviation
being slightly larger.

The effect of varying the friction strength γ̃∆t on the
efficiency was also investigated. Simulation results are also
reported in Table 1. The results obtained with higher fric-
tion show no increase of efficiency. For instance, simula-
tions carried out with γ̃∆t = 1 (overdamped or diffusion
Langevin dynamics) requires 106 to 107 Langevin steps
to obtain high enough acceptance rates and accurate es-
timations. At variance, the results obtained with a lower
friction (γ̃∆t = 10−2) show an increased efficiency. In this
last case, transformations consisting in Nstep = 105 steps
were sufficient to yield relatively high acceptance rates
and small standard deviations for the estimated excess
free energy. When still lowering the friction strength to
γ̃∆t = 10−3, the efficiency was observed to deteriorate
(see Tab. 1 for ∆t = 8×10−2). This effect is attributed to
the insufficient dissipation and, hence, heat transfer with
the thermostat. As a result, the effective work overesti-
mates the reversible work or equivalently entropy produc-
tion is positive and important.

Figures 1 and 2 illustrate the compromise that must
be achieved when choosing the value of the time step
at given friction strength, γ̃∆t = 10−2, and number of
Langevin steps, Nstep = 105, between insufficient dissi-
pation for small time steps and too large discretization
errors for large time steps. When the discretization errors
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Table 1. Excess free energies per particles estimated using the residence weight method as a function of various simulation
parameters. The standard deviation of the estimated free energy is computed by grouping the simulation data in Nblock blocks
for σ0 and Nblock/10 blocks for σ1. Each block consists in Ncycle cycles where a cycle corresponds to two transformations, one
in the positive direction of time and the other in the negative direction.

γ̃∆t βFex/at. ±σ0 ± σ1 ∆t (fs) Nstep Ncycle Nblock τ+
acc (%) τ−

acc(%)

10−1 −1.2433 ± 174 ± 103 1 106 10 87 06.20 09.89

−1.2437 ± 171 ± 112 2 106 10 61 08.36 07.54

−1.2722 ± 107 ± 021 2 107 1 100 61.00 51.00

−1.26689 ± 697 ± 135 4 106 10 99 34.74 34.24

5 × 10−1 −1.2490 ± 206 ± 006 4 106 10 26 02.69 02.31

100 −1.1617 ± 338 ± 103 4 106 10 35 00.00 12.60

−1.2418 ± 188 ± 028 8 106 10 37 12.20 16.20

−1.2711 ± 233 ± 088 4 107 1 80 26.30 21.20

−1.2741 ± 302 ± 135 8 107 1 33 12.10 21.20

10−2 −1.26256 ± 966 ± 439 4 105 10 132 21.89 27.27

−1.26648 ± 681 ± 246 6 105 10 69 36.23 33.47

−1.26682 ± 575 ± 180 8 105 10 127 38.66 44.57

10−3 −1.2624 ± 113 ± 012 8 105 10 26 13.46 17.69
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Fig. 1. Normalized effective work βW̃0→1 after 105 Langevin
steps as a function of the normalized direct work βW0→1 for
a set of 100 quenches.

become too important, the effective works increase dra-
matically while the standard deviation is much enhanced.
Estimated free energies are not reliable in this case.

We now investigate the effect of varying θ on the sam-
pling efficiency. Values ranging from 0 to 1 are possible
for θ. However, choosing extremal values would deteri-
orate the sampling efficiency of the bidirectional scheme
which justifies a posteriori the intermediate choice θ = 1/2
made here. To illustrate this point, let us consider that θ
is set to 1. Then a path generated in the negative direc-
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Fig. 2. Normalized effective work βW̃0→1 after 105

Langevin steps as a function of the discretization errors

β
[
W̃0→1 −W0→1

]
for a set of 100 quenches.

tion of time is first accepted with probability one (as ex-
pected from Eq. (20)) but is more likely to be rejected
together with the ensuing path generated in the posi-
tive direction of time because trial paths will have to be
accepted by pairs in the acceptance procedure of equa-
tion (19): the probability of insufficient overlapping will
be higher yielding smaller mean acceptance rates and a
lower computational efficiency. As a consequence, monodi-
rectional schemes should be implemented when the value
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Table 2. Excess free energies per particles estimated using the expanded path method as a function of various simulation
parameters. Paths have been generated with the positive direction of time only, θ = 1 and γ̃∆t = 10−2. The standard deviations
σ0 and σ1 are computed by grouping the corresponding data in Nblock and Nblock/10 blocks consisting in 2 × 106/Nsteps or
2 × 107/Nsteps trial path generations, respectively.

Nstep βFex/at. ±σ0 ±σ1 ∆t (fs) Nblock τ+
acc(%)

105 −1.26881 ± 611 ± 614 0.8 146 00.34

−1.2614 ± 140 ± 097 2.4 122 02.99

−1.2626 ± 237 ± 207 8 501 08.08

−1.2661 ± 193 ± 151 16 200 00.06

−1.2604 ± 247 ± 245 24 129 0.009

2 × 105 −1.2575 ± 116 ± 072 0.8 168 01.83

−1.2631 ± 191 ± 147 2.4 170 05.61

−1.2710 ± 113 ± 077 8 100 22.84

−1.2807 ± 191 ± 187 16 110 02.25

−1.21153 ± 768 ± 338 24 232 00.22

5 × 105 −1.2653 ± 132 ± 115 0.8 100 04.00

−1.2594 ± 159 ± 132 2.4 100 21.25

−1.2661 ± 149 ± 126 8 100 35.00

−1.2631 ± 203 ± 169 16 100 03.00

−1.1949 ± 201 ± 158 24 100 01.25

106 −1.2694 ± 132 ± 116 0.8 493 09.72

−1.26881 ± 973 ± 562 2.4 159 37.18

−1.2670 ± 112 ± 087 8 237 26.89

−1.1537 ± 324 ± 320 16 167 04.46

−0.4015 ± 462 ± 424 24 190 02.62

of the sampling parameter is extremal, the case θ = 0
being analogous.

4.4 Monodirectional scheme

We have only investigated the sampling efficiency for the
case where θ is set to 1 and the paths are always gen-
erated in the positive direction of time. Table 2 reports
free energy estimations obtained using the expanded path
method, various time steps and number of steps. The
mean acceptance rates τ+

acc are also reported.
In the simulations where ∆t = 0.8 fs with Nstep equals

to 105, 2 × 105 and 5 × 105, high standard deviations are
obtained for the estimated free energy in spite of small dis-
cretization errors. This is because the system has not suffi-
ciently relaxed. In the case where the time step is made too
large ∆t = 24 fs, with M equals to 105, 2×105, 5×105 and
106, the mean acceptance rates are small resulting from a
broad dispersion of the effective works. For intermediate
values of the time step and sufficient number of Langevin
steps, high acceptance rates and correct free energy esti-
mations can be obtained. Hence, for the monodirectional
scheme, the mean acceptance rate also correlates with the
degree of convergence of the estimated value.

The observed trend can be rationalized by invoking
the nonequilibrium theorems concerning both the mean
value and distribution of the entropy production. A broad

dispersion of the effective works in the positive direc-
tion should result in a a large mean entropy produc-
tion (Eqs. (15, 16)). Subsequently, almost all paths escape
from high probability density regions of the phase space.
From the nonequilibrium fluctuation theorem (Eq. (17)),
a subsequent path generated in the negative time direction
would unlikely return to high probability density regions,
but rather continue its excursion in far from equilibrium
regions yielding a weak overlap and an important uncer-
tainty on the estimated free energy.

Hence, a narrow dispersion of the effective works mea-
sured whether the simulations are carried out with the
monodirectional or bidirectional scheme, implies small en-
tropy productions in absolute value, an efficient numerical
convergence of the sampling scheme and high a mean ac-
ceptance rate. The latter one thus provides a tool for diag-
nosing the degree of numerical convergence. However, this
diagnozing tool may not be a sufficient condition in any
cases and one should always analyse standard deviations
ultimately so as to make sure that numerical ergodicity in
the path space has been reached.

Finally, it is instructive to note that the monodirec-
tional scheme with θ = 1 converges slightly more slowly
than the bidirectional scheme with θ = 1/2 as indicated
in Table 3. This trend is consistent with the fact that
a smaller mean entropy production in absolute value is
expected for the intermediate θ-value in [0,1] from equa-
tions (15, 16).
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Table 3. Excess free energies per particles estimated using
the expanded path method (EP) or using the residence weight
method (RW). Paths have been generated with either the pos-
itive direction of time only, (+), or alternating directions, (A),
γ̃∆t = 10−2, Nstep = 105 and ∆t = 8 fs. The standard devia-
tions σ0 and σ1 are computed by grouping the collected data in
Nblock and Nblock/10 blocks consisting in 20 or 200 trial path
generations, respectively.

Method βFex/at. ±σ0 ±σ1 Nblock τacc (%)

EP/+ −1.26696 ± 1543 ± 0827 315 10.60

RW/+ −1.22104 ± 0871 ± 0516

EP/A −1.26941 ± 1050 ± 0351 336 41.05

RW/A −1.26852 ± 0642 ± 0267

4.5 Towards thermodynamics of metastable systems

The previously described monodirectional scheme may be
used as an optimization tool for finding compositions of
relative metastability below the glass transition tempera-
ture. Metastable states of relatively low energies are con-
structed by quenching high temperature states, the de-
gree of metastability in the low temperature system being
controlled by the quenching rate. Below the glass tran-
sition temperature, the structure relaxes so slowly that
it is not possible to explore the compositional degrees of
freedom directly in the configurational phase space. Com-
position can only be varied in the high temperature regime
above the glass transition temperature before performing
a quench.

For this purpose, it should be convenient to consider
an expanded grand canonical or expanded Gibbs ensem-
ble G =

∑M
m=0 Gλm and to generate a path distribution

{P i
j}θ=1 according to the G̃θ=1 statistics. Then, access

to compositions of relative metastability or of coexistence
at the low temperature would be guaranteed by the fact
that the path terminal states Sj ∈ P i

j would be directly
distributed according to the metastable G1 distribution,
which would result from the fact that θ has been set to 1.

5 Conclusion and perspectives

We have implemented a path-sampling scheme in which
the stochastic paths are generated through an expanded
ensemble using Langevin’s equation of motion. We then
showed how to directly compute the thermodynamic prop-
erties of a many-body system using either an expanded
path method or a residence weight method. The two prac-
tical results are that (i) the systematic errors in Langevin’s
discretized dynamics can be rigorously taken into account
in the path-sampling scheme, and that (ii) an efficient nu-
merical convergence of the estimated values towards the
exact thermodynamic quantities is insured by small en-
tropy productions (in absolute value) along the generated
paths, which requires high a mean acceptance rate for the
trial paths in the Metropolis test.

Future studies will focus on the application of the path-
sampling methodology to glassy systems where the pres-
ence of many local minima prevents from directly explor-
ing the phase space at low temperatures.

A timely correspondence with T. Vlugt about a teaching
project allowed me to structure this article. I am also indebted
to P.N. Vorontsov-Velyaminov for instructive comments, hos-
pitality and providing me with relevant references. Fruitful
discussions with my colleagues G. Adjanor, J.-L. Bocquet,
Y. Limoge, L. Martin-Samos and G. Roma are finally ack-
owledged.

Appendix A: Langevin algorithm

The use of a finite time step in a Langevin dynamics re-
sults in ineluctable discretization errors. We show in this
appendix how to derive an analytical expression of these
errors that can be incorporated into the path-sampling
procedure as a bias. Systematic errors will be, in this way,
transformed into controllable statistical errors.

The approach consists of deriving the various pa-
rameters of the full Langevin equation from the flux-
reversibility condition [15] and the form of the stationary
distribution which is known a priori. We indeed generalize
the way existing Monte Carlo schemes based on the over-
damped or diffusion Langevin equation were derived. In
these schemes (smart Monte Carlo [31], force-bias Monte
Carlo [32], Langevin Monte Carlo [33] and hybrid Monte
Carlo Molecular Dynamics [34,35]), the parameters of the
deterministic parts were adjusted a posteriori from the de-
tailed balance condition and the discretization errors were
also taken into account in the acceptance procedure as a
statistical bias.

In Langevin’s equation of motion, the generalized force
acting upon the particles are the sum of the interparticle
forces fn = −∇rnH, the frictional forces and the fluctu-
ating forces, generated from a normal distribution whose
exact amplitude will be derived below. The frictional and
the fluctuating forces will be combined and described as
a single fluctuating force ln, called the Langevin force.
The discretization of Langevin’s equation of motion will
be based on a leapfrog algorithm. Using the generalized
force to increment the momenta at half-step, the leapfrog
algorithm with time step ∆t can be transposed as follows:

rn = rn−1 + pn− 1
2

∆t

m
(26)

pn+ 1
2

= pn− 1
2

+ (fn + ln)∆t (27)

where rn and pn+ 1
2

are the particle positions and mo-
menta at time n∆t and (n + 1

2 )∆t, respectively. It will
be usefull to define integer-step momenta and half-step
positions as follows

pn = [pn− 1
2

+ pn+ 1
2
]/2 (28)

rn+ 1
2

= [rn+1 + rn]/2. (29)
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Let us first consider the leapfrog algorithm implemented in
the microcanonical ensemble. Then, the Langevin force ln
must be switched off. Neglecting discretization errors, the
leapfrog algorithm would clearly be flux-reversible, since
there would be equality between the probability fluxes in
the positive and negative directions of time: changing the
sign of the time step allows to construct the exact reverse
trajectory. Imposing now the condition of flux-reversibility
to the leapfrog algorithm in the canonical ensemble will al-
low us to derive the adequate Langevin fluctuating force.
The fluctuating force ln is generated from two distinct
states Sn− 1

2
≡
[
pn− 1

2
, rn− 1

2

]
or S−

n+ 1
2
≡
[
−pn+ 1

2
, rn+ 1

2

]
with opposite momenta depending on whether the posi-
tive or negative time trajectory is considered. The pro-
cedure for generating the Langevin force will thus be
adapted so as to make the positive and negative time
probability fluxes coincide up to second order with re-
spect to the time step. This requires first to introduce
Hn+ 1

2
= H(±pn+ 1

2
, rn+ 1

2
) the half-step Hamiltonian, b+

n

the conditional probability to flow from Sn− 1
2

to Sn+ 1
2

and b−n the one to flow from S−
n+ 1

2
to S−

n− 1
2
. The half-

step probability flux ratio between rn− 1
2

and rn+ 1
2

thus
corresponds to

Kn+ 1
2

n− 1
2

Kn− 1
2

n+ 1
2

=
exp
[
−βHn− 1

2

]
b+
n

exp
[
−βHn+ 1

2

]
b−n

. (30)

Let us now describe the generation of the biased fluctuat-
ing force used to increment the half-step velocities: a trial
fluctuating force is generated ln′ from a normal distribu-
tion and is used to construct the corresponding state Sn′ .
So as to insure that the generated state is as representa-
tive as possible of the canonical distribution, the genera-
tion of the trial state is weighted with the modified state
density C exp [−αβHn′ ] where a correcting factor α has
been introduced here in anticipation of the manipulations
to come. In the general case, the weighted distribution
can always be constructed using an acceptation-rejection
procedure. Here, the position coordinates of the trial state
Sn′ are independent from the trial fluctuating force ln′ (we
have rn′ ≡ rn from Eq. (26)), which implies that the den-
sity probability distribution can be analytically derived
from the product of the two normal distributions:

P1 [ln′ ] =
[

β∆t

4mπγ̃

] 3N
2

exp

[
−αβ

2m

2α−1

γ̃∆t

(
ln′

∆t

2

)2
]

(31)

P2 [ln′ ] =
[
αβ∆t2

8mπ

] 3N
2

exp
[
−αβ

2m
|pn′ |2

]
, (32)

where the amplitude of the trial fluctuation is controlled
by the coefficient, γ̃, and pn′ = pn− 1

2
+(fn + l′n)∆t/2 from

equation (27).
Multiplying the two normal probability distributions

(Eqs. (31, 32)) yields the conditional probability in the

positive direction of time

b+
n = A exp


−αβ

2m

(
1 +

2
αγ̃∆t

) ∣∣∣∣∣ln ∆t

2

+
(

1 +
2

αγ̃∆t

)−1(
pn− 1

2
+ fn

∆t

2

) ∣∣∣∣∣
2

 , (33)

where A is an adequate normalizing constant independent
of the state. The standard deviations of the Langevin force
can be deduced from the argument of the normal distri-
bution in equation (33)

σ(ln
√

∆t) =

√
2mγ̂

αβ
,

where γ̂ = 2
∆t

[
1 + 2

αγ̃∆t

]−1

is the effective friction. The
first moment of the Langevin force corresponds to a fric-
tional force −˜̃γp opposed to the particle velocity. The cor-
recting factor α that determines the two first moments of
the Langevin force will be chosen so that the probability
flux ratio of equation (30) is as close as possible to 1, which
requires to derive this quantity. The half-step conditional
probability in the positive direction of time is

b+
n =

[
αβ∆t

4mπγ̂

] 3N
2

exp

{
−αβ

2m

2
γ̂∆t

×
∣∣∣∣ln ∆t

2
+ γ̂

∆t

2

(
pn− 1

2
+ fn

∆t

2

)∣∣∣∣
2
}

. (34)

The corresponding time-reverse conditional probability
can be obtained by similarly expressing the momenta pn

in equation (32) as a function of ln and pn+ 1
2

by means
of equation (28). This is equivalent to substitute pn− 1

2
for

−pn+ 1
2

in equation (34). Both ways leads to

b−n =
[

αβ∆t

4mπγ̂

] 3N
2

exp

{
− αβ

2m

2
γ̂∆t

×
∣∣∣∣ln ∆t

2
− γ̂

∆t

2

(
pn+ 1

2
− fn

∆t

2

)∣∣∣∣
2
}

. (35)

The Langevin force in equation (27)

ln∆t = pn+ 1
2
− pn− 1

2
− fn∆t

can be substituted into the probability ratio:

b−n /b+
n = exp

{
αβ

2m
(1 − γ̂∆t/2)

[
pn+ 1

2
+ pn− 1

2

]
.

×
[
pn+ 1

2
− pn− 1

2
− fn∆t

]}

= exp
{

αβ

(1 − γ̂∆t/2)−1
Q+

n

}
(36)
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where the effective heat transfered from the thermostat

Q+
n =

1
2m

(
p2

n+ 1
2
− p2

n− 1
2

)
− ∆t

m
pn · fn

has been introduced. Thales’s identity

pn =
m

2∆t
[rn+1 − rn−1] =

m

∆t

[
rn+ 1

2
− rn− 1

2

]
permits to rewrite the effective heat as

Q+
n =

1
2m

(
p2

n+ 1
2
− p2

n− 1
2

)
−
[
rn+ 1

2
− rn− 1

2

]
· fn.

Performing a Taylor expansion of the interatomic poten-
tial E(rn+hn) around rn and substituting rn± 1

2
−rn for hn

yields

En+ 1
2
− En− 1

2
=

−
[
rn+ 1

2
− rn− 1

2

]
· fn + O

(∣∣∣rn+ 1
2
− rn− 1

2

∣∣∣2) .

Assuming now that the forces and velocities are bounded
implies that there exists B > O such that |rn+ 1

2
−rn− 1

2
| <

B∆t for all n which yields Hn+ 1
2
−Hn− 1

2
= Q+

n +O(|∆t|2).
This last identity enables us to choose the adequate cor-
recting factor α−1 = 1 − γ̂∆t/2 minimizing the drift of
the flux ratio in equation (30). Since γ̂ depends on both γ̃
and α−1, the previous condition yields a second order
polynomial α−2+α−1(γ̃∆t/2−1) = 0 with respect to α−1.
The unphysical root α−1 = 0 is to be discarded which im-
plies α−1 = 1− γ̃∆t/2 and subsequently γ̂ = γ̃. With this
choice, the case γ̃∆t = 1 corresponds to a discretization
for the diffusion Langevin equation, since the friction can-
cels the inertial term. The cases 1 < γ̃∆t < 2 leads to
an unphysical dynamics while the cases γ̃∆t ≥ 2 are not
possible.

Note that in the previous expansion, the second order
term does not cancel because the vector position rn is not
necessarily the middle of rn− 1

2
and rn+ 1

2
. Nevertheless,

expanding the potential to second order around rn+ 1
2
,

En+1 − En = (rn+1 − rn) · fn+ 1
2

+ O(|rn+1 − rn|3) (37)

and then the force fn+ 1
2

to first order around both rn and
rn+1

En+1 − En = (rn+1 − rn) · (fn+1 + fn)/2 + O(|rn+1 − rn|3)

allows to cancel the second order term, since rn+ 1
2

is the
middle of rn and rn+1. When many Langevin steps are
effected, then adequately rearranring the total discretiza-
tion error implies that an additional order of precision can
be obtained. The algorithm is indeed valid to second or-
der.

Note that a more formal way to derive dynamical al-
gorithms consists of decomposing the Liouville operator
describing the dynamics [1]. In the present context, our
approach can be seen as a second-order Trotter factorisa-
tion of Hamilton’s equation of motion with a stochastic

process on the momenta defined as ṗ = −γp+ b where γ
and b are a continuous-time friction and a centred normal
noise of standard deviation

√
2mγ

β . Then using a second
order Trotter factorization for Hamilton’s equation (Ver-
let’s algorithm) and integrating the stochastic process over
the time step yields

pn+ 1
2

=
(
pn− 1

2
+ fn

∆t

2

)
x + bn + fn

∆t

2
(38)

where the discrete centred normal noise bn has standard
deviation

√
(1 − x2)m

β and x = exp−γ∆t ≡ 1−γ̃∆t. This
connects our discretized friction to the one that would
appear in the continuous-time Langevin equation.

Adjusting Langevin’s parameters from the flux-
reversibility condition as we did is a more intuitive ap-
proach that may be fruitfull in complicated dynamics for
which the corresponding Liouville operator has not been
decomposed into efficient symplectic algorithms yet (for a
review see Ref. [36]).

Appendix B: Residence weight method

In the residence weight method, trial paths are alterna-
tively generated in the positive and negative direction
of time. Because of this alternation constraint, the suc-
cessive path of the generated chain can be noted P2i−1

2i ,
P2i+1

2i , P2i+1
2i+2 ... with for the corresponding extremal states

S2i ∈ Z0 and S2i+1 ∈ Z1... The path density of P2i−1
2i will

be αN0(S2i) and the one of P2i+1
2i will be αN1(S2i+1),

α being an adequate normalizing factor. The paths are
thus alternately considered with respect to the Z0 or Z1

subpartition functions that play the role of subprojection
functions.

The residence weight algorithm decomposes into three
stages: (i) one generates a new trial path P2i−1′

2i with prob-
ability P+

gen(P2i−1′
2i ), initiated from S2i ∈ Z0 of P2i−1

2i

projected on Z0, (ii) one decides whether the trial path
is accepted P2i+1

2i ≡ P2i−1′
2i or rejected P2i+1

2i ≡ P2i−1
2i .

The a posteriori probability associated to this second
stage is P+

acc(P2i+1
2i ) = P+

acc(P2i−1′
2i ) or P+

acc(P2i+1
2i ) =

1−P+
acc(P2i−1′

2i ), depending on whether the path has been
accepted or rejected. (iii) One forces a path-reversal (the
subprojection function is changed to its complementary).

We will impose that the three-stage algorithm obeys
a weighted detailed balance equation written between the
two subpartition functions

α

τ0(2i)
N0 (S2i)P+

gen(P2i+1
2i )P+

acc(P2i+1
2i ) =

α

τ1(2i + 1)
N1 (S2i+1)P−

gen

(
P2i+1

2i−2

)
P−

acc

(
P2i+1

2i−2

)
(39)

where τ0(2i) and τ1(2i + 1) are the weights to take into
account in the sampling procedure when averaging a phys-
ical quantity. These weights must be invariant with respect
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to a chain-reversal and as they depend on the acceptance
probabilities, these latter ones must therefore be chosen
judiciously. In the positive time direction, the a posteriori
probability to have accepted the trial path is

P+
acc(P2i+1

2i ) = min


1,

[
K1(P2i−1′

2i )
K0(P2i−1′

2i )
K0(P2i−1

2i )
K1(P2i−1

2i )

]θ



if P2i+1
2i ≡ P2i−1′

2i or

P+
acc(P2i+1

2i ) = 1 −
[
K1(P2i−1′

2i )
K0(P2i−1′

2i )
K0(P2i−1

2i )
K1(P2i−1

2i )

]θ

if P2i+1
2i ≡ P2i−1

2i . This choice corresponds to equation (19)
with the same notations of Section 3. Let us define the
residence weight in Z0 as

τ0(2i) = Pacc(P2i+1
2i )

[
K0(P2i+1

2i )
K1(P2i+1

2i )

]θ

, (40)

which simplifies to

τ0(2i) =




min
([K0(P2i+1

2i )

K1(P2i+1
2i )

]θ
,
[K0(P2i−1

2i )

K1(P2i−1
2i )

]θ)
[
K0(P2i−1′

2i )

K1(P2i−1′
2i )

]θ

−
[K0(P2i−1

2i )

K1(P2i−1
2i )

]θ , (41)

respectively in case of acceptation (P2i+1
2i ≡ P2i−1′

2i ) or
rejection (P2i+1

2i ≡ P2i−1
2i ). This residence weight is in-

variant under a chain-reversible owing to the symmetric
role played by the indices 2i + 1 and 2i − 1.

Similarly, with trial paths generated in the negative
time direction from Z1 and the path chain considered in
the reverse direction, using an acceptation probability cor-
responding to equation (20) yields the residence weights,
in case of acceptance (P2i+1

2i ≡ P2i+1
2i+2′)

τ1(2i + 1) = min


[K1(P2i+1

2i )
K0(P2i+1

2i )

]1−θ

,

[
K1(P2i+1

2i+2 )

K0(P2i+1
2i+2 )

]1−θ

 ,

or, in case of rejection, P2i+1
2i ≡ P2i+1

2i+2

τ1(2i + 1) =

[
K1(P2i+1

2i+1′)

K0(P2i+1
2i+1′)

]1−θ

−
[
K1(P2i+1

2i )
K0(P i+1

2i )

]1−θ

.

This residence weight is also invariant under a chain-
reversible owing to the symmetric role played by the in-
dices 2i + 2 and 2i One finally checks that our algorithm
obeys the weighted detailed balance condition (Eq. (39)).

The residence weight ratio 〈τ1〉/〈τ0〉 that gives an
estimate of the desired quantity is similar in spirit to
the biased occupation ratios in expanded ensemble meth-
ods [4]. In preceding articles [18,19] about the resi-
dence weight method, trial states, rather than trial paths,
were considered to be generated with biased Monte

Carlo schemes [37–42] obeying a super detailed bal-
ance condition [1]. Reversals to the previous state or
configuration, rather than path rejections, were depicted
which required to introduce the concept of non-Markovian
sampling. This point is also reminiscent of the various non-
Markovian preliminary procedures of expanded ensemble
methods [4,8,9,17]. Nevertheless, this method could have
been considered as Markovian, if one had artificially incor-
porated the memory kernel of the process into the sampled
ensemble by extending it [43]. This would have led to the
concepts of path-ensemble and path-sampling, since super
detailed balance assumes detailed balance over each path
connecting any two consecutive states of the chain.

Finally, note that imposing a weighted detailed balance
condition between Z0 and Z1 subensembles implies the
time alternation constraint. The effect of not satisfying
this constraint is illustrated in Table 3 of Section 4.4 where
it is shown that, in such a case, incorrect estimations are
obtained resulting from the violation of detailed balance.
At variance, the expanded path method, which does not
account for all the rejected path information, is free from
any alternation constraint. Hence, it is less accurate but
more general than the residence weights method. For this
reason, the method of expanded paths can be considered
as a additional variant method of expanded ensembles.
Expanded ensemble methods can indeed be implemented
in microcanonical [44,45], thermal or path ensembles.
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